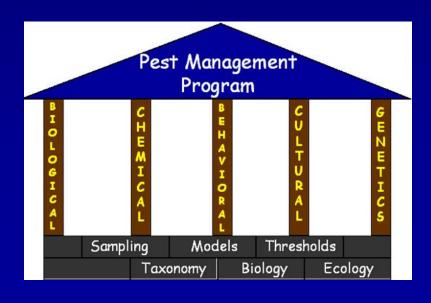

Host-free period for *Tomato yellow* leaf curl virus control

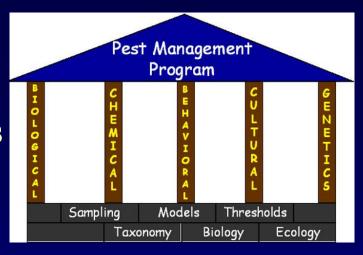


Robert L. Gilbertson
Department of Plant Pathology
University of California-Davis

Integrated Pest Management (IPM) of Insect-Transmitted Plant Viruses

- An approach that combines multiple management strategies (e.g., biological, chemical, cultural, genetic and physical) selected based on knowledge of the biology of the virus(es)
- Goal is efficient management with minimal inputs of pesticide; economically and environmentally friendly
- Three basic steps:
 - 1. Correct pathogen ID
 - 2. Understanding pathogen biology/ disease epidemiology
 - 3. Development and evaluation of an integrated management strategy

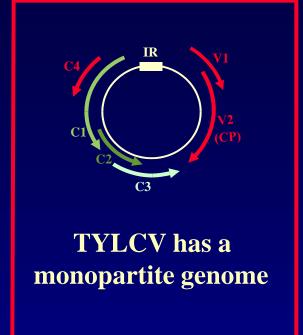
Once the problem is identified: Understanding the biology of the virus is necessary for effective disease management


- Biology of the virus (host range, mode of transmission, etc.)
- Biology of the insect vector (host range, population dynamics etc.)
- Insect-virus interaction (mode of transmission)
- Sources of inoculum
 - -seed
 - -weeds/other reservoir hosts
 - -old crops
 - -insects
- Means of survival in the absence of the economic hosts

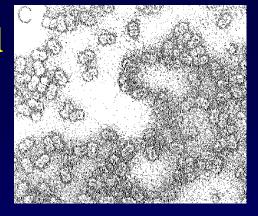
Disease management

- Select appropriate management strategies based on knowledge of the biology of the virus
 - -regulatory (do not introduce exotic pathogens on/in seeds and transplants)
 - -avoidance (field location, planting dates)
 - -disease resistance (conventional and transgenic)
 - -pathogen-free propagative materials (seeds and transplants)
 - -protection (screenhouses, greenhouses, row covers)
 - -disease monitoring and forecasting
 - -vector management (insecticides)
 - -removal of diseased plants (roguing)
 - -sanitation (harvested crops, weeds, volunteers)
 - -crop rotation
 - -host-free periods

What is a host-free period?


- A means of breaking continuous cropping patterns through a defined period of time where a susceptible crop(s) is not grown, resulting in the 'cleansing' of virus inoculum from the agroecosystem
- In temperate regions the winter can provide a natural host-free period
- Best suited to annual crops harvested over a short period (e. g., vegetables and cotton)
- Nature of the host-free period (e.g., time of year, length, crops involved, area) will depend on crop, cropping system, and virus-host and -vector interaction
- Must be done along with extensive sanitation
- Can be legally enforced or voluntary

Tomato yellow leaf curl virus (TYLCV) 'The mother of all tomato viruses'

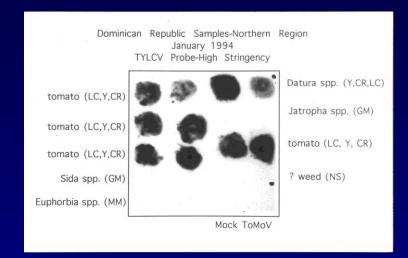

- TYLCV was first described in Israel around 1940
- Transmitted by the sweet potato whitefly (Bemisia tabaci)
- Causes the devastating tomato yellow leaf curl disease (TYLCD)
- First begomovirus shown to have a monopartite genome
- Introduced into the Western Hemisphere in the early 1990s
- Now present throughout the Caribbean Basin, Southern USA, Mexico, Guatemala and Venezuela

Biological properties that make a host-free period effective for management of TYLCV

- Not seed-transmitted
- Has a narrow host range (i.e., most important inoculum source is the crop plant itself)
- Host plant (tomato) is an annual crop
- Whitefly vector has a relatively short (~30 day) life cycle and the virus is not transovarially transmitted
- •Thus, a 2-3 month host-free period can be a very effective and sustainable management strategy for TYLCV and can also reduce whitefly populations

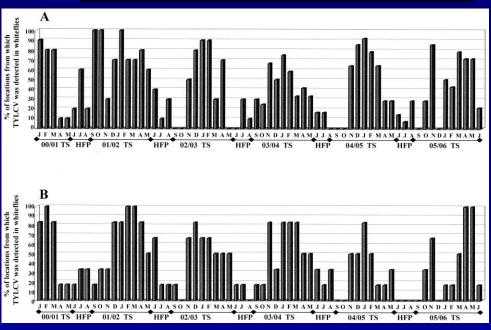
TYLCV is a geminivirus

Implementation of a government-enforced host-free period has been a critical component of a successful IPM program for *Tomato yellow leaf curl virus* in the Dominican Republic


- In the early 1990's TYLCV was inadvertently introduced into the Dominican Republic (DO)
- Molecular tools (PCR and sequencing) confirmed it was TYLCV
- The virus was spread quickly by high populations of indigenous *Bemisia tabaci* and caused heavy losses on the highly susceptible varieties grown in the DO
- TYLCV threatened to destroy the DO processing tomato industry

Investigation into the biology of TYLCV in the DO led to establishment of a host-free period for TYLCV

- Squash blot hybridization with a TYLCV-specific probe indicated that the virus was primarily infecting tomato and not other crops and weeds
- Recommendation was made to implement a tomato-free period in the main growing areas of the North and South
- The government decided to implement a mandatory 3 month whitefly host-free period to because of the importance of the tomato industry and the damage to other crops by whiteflies



Investigation into the biology of TYLCV in the DO led to establishment of a host free period for TYLCV

- The host-free period was implemented along with a number of other practices (vector control [esp. in transplants], planting early maturing/resistant varieties), and sanitation
- This IPM approach has been used for ~20 years and has allowed for the recovery of the industry
- Evidence that the host-free period is a key component of this program comes from:
 - -4-8 week delay in the appearance of TYLCV symptoms following the host-free period
 - -Dramatic drop in detection of TYLCV whiteflies during host-free period

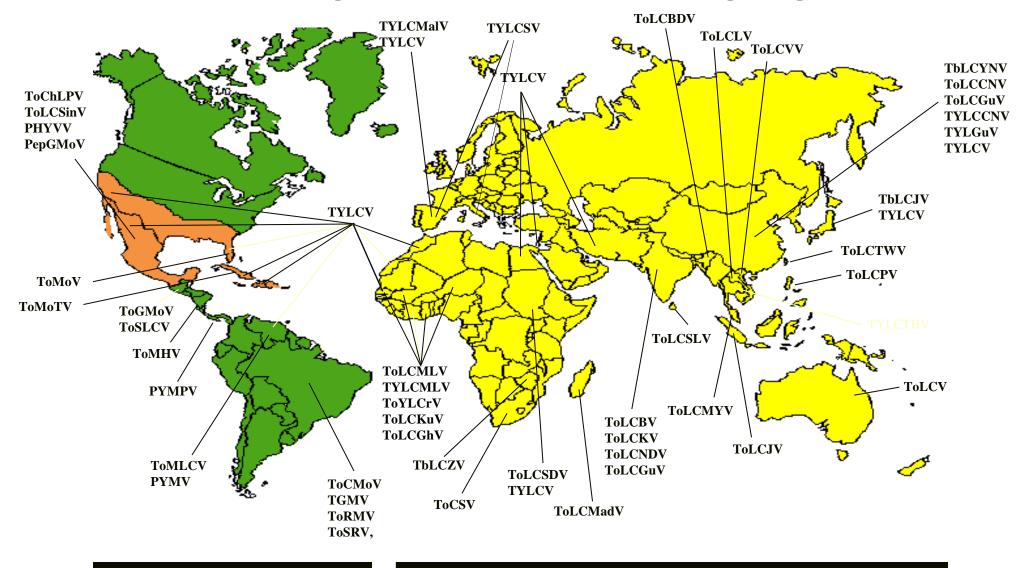
Detection of TYLCV in whiteflies

The host-free period stimulated research that revealed other aspects of the biology of TYLCV in the DO

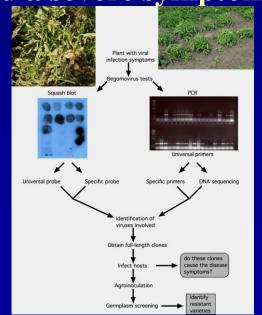
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

PCR detection of TYLCV in symptomless weeds

- TYLCV persists during the host-free period in symptomless weeds
- This is consistent with an 'edge-effect' for the initial appearance of TYLCV in the field
- Pepper is a poor host of TYLCV, but will develop symptoms under high virus pressure
- Common bean is also a TYLCV host, especially large-seeded Andean types
- Certain TYLCV-resistant tomato varieties sustain high virus titers despite not showing symptoms
- These finding have helped fine-tune or maintain aspects of the host free period


The host-free period in the DO has been a critical component of the IPM program that has allowed for the recovery of the tomato industry

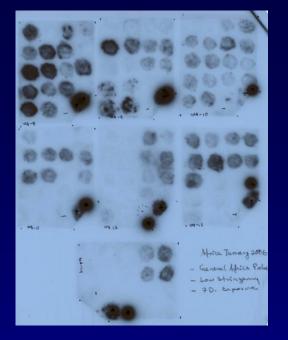
- Three-month period (June/Sept)
- Government-enforced
- Results in a reduction of TYLCV inoculum and whitefly populations
- Provides a 4-8 wk window after planting before TYLCV appears
- Includes peppers, beans, and cucurbits
- Grower acceptance facilitated by education, and it has now become institutionalized
- Violators are a continual challenge

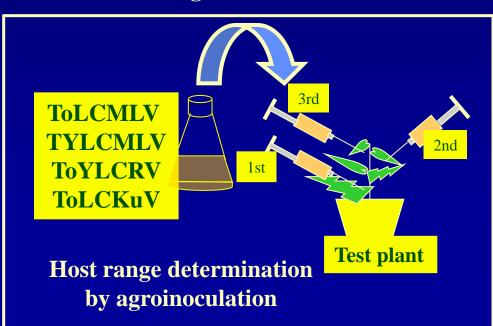

Worldwide Emergence of Tomato-infecting Begomoviruses

New World Bipartite Begomoviruses Old World Monopartite Begomoviruses ± betasatellite Application of the host-free period for management of whitefly-transmitted geminiviruses (WTGs) in West Africa

• WTGs have emerged as a major constraint on tomato production in West Africa

• Molecular characterization has revealed a complex of at least 5 locally evolved monopartite begomoviruses and one or more betasatellites causing symptoms of leaf curl, yellow leaf crumple and a severe symptom phenotype





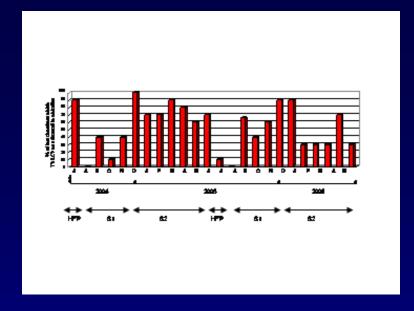
Can a host free period be part of an IPM strategy for the complex of WTGs in West Africa?

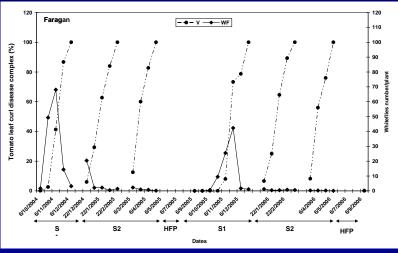
- Squash blot (SB) hybridization and SB-PCR tests of crops and potential hosts suggested that the West African tomato WTGs have a narrow host range
- Host range studies performed with infectious clones of these begomoviruses supported these results and indicated that tomato and tobacco were hosts
- Taken together with the other known biological parameters of WTGs, this suggested that a host-free period could be an effective management strategy

Squash blot hybridization for begomovirus detection

Implementation of the host free period in the Bagiuneda irrigated rice-vegetable perimeter

- The Baguineda irrigated rice-vegetable perimeter was selected as a test site
- This location was so severely impacted by WFGs that tomato production had been abandoned
- The rainy season months (June-August) were selected for implementation of the host-free period
- Meetings were conducted with chiefs of the local villages to explain why the host-free period was needed
- The host-free period was implemented along with the planting of early maturing hybrids and a regional sanitation program beginning in 2005





Application of a voluntary host-free period for management of tomato begomoviruses in West Africa

- Sanitation program initiated: old tomato and pepper plants removed after harvest
- Tomato and pepper free period implemented in June-August
- Seeds of early maturing hybrid tomatoes were distributed to selected farmers
- Monitoring program developed to assess the success of the program
 - -Development of virus symptoms
 - -Detection of virus in whiteflies
 - -Monitoring of whitefly populations

Application of a voluntary host-free period for management of begomoviruses in West Africa

- This program has been ongoing for 5 years
- Has allowed for the return of tomato production to Baguineda (in fact bumper crops have created a need for storage technologies)
- The overall importance of WTGs is declining in Baguineda
- Farmers have embraced the program and are seeking to purchase seed of the early maturing hybrids
- An NGO scaled-up the program to include more farmers in Baguineda and other locations
- Host-free periods are being expanded to new areas in Mali

A host-free period can be an effective tool for control of TYLCV and other tomato begomoviruses

- Based upon knowledge of the biology of the virus
- Should be part of an IPM program (e.g., combined with an effective sanitation program)
- Sustainable and inexpensive
- Must be a regional effort
- Can be voluntary or enforced
- Could be used anywhere where these viruses are a constraint on tomato production

Acknowledgements

- USAID
 - -IPM-CRSP
 - -Mali Mission
- Transagricola, S.A., Dominican Republic
 - -Ing. Miguel Sanchez and associates
- Institut D' Economie Rurale, Mali
 - -Dr. Moussa Noussourou, Mme. Kadiatou Gamby
- UC Davis
 - -Dr. Maria Rojas, Dr. Raquel Salati, Dr. Tatsuya Kon and other members of the Gilbertson Laboratory